Description

The 3500 Transient Data Interface (TDI) is the interface between the 3500 monitoring system and GE’s System 1* machinery management software. The TDI combines the capability of a 3500/20 Rack Interface Module (RIM) with the data collection capability of a communication processor such as TDXnet.

The TDI operates in the RIM slot of a 3500 rack in conjunction with the M series monitors (3500/40M, 3500/42M, etc.) to continuously collect steady state and transient waveform data and pass this data through an Ethernet link to the host software. (Refer to the Compatibility section at the end of this document.) Static data capture is standard with the TDI, however using an optional Channel Enabling Disk will allow the TDI to capture dynamic or transient data as well. The TDI features improvements in several areas over previous communication processors and incorporates the Communication Processor function within the 3500 rack.

Although the TDI provides certain functions common to the entire rack it is not part of the critical monitoring path and has no effect on the proper, normal operation of the overall monitor system. Every 3500 rack requires one TDI or RIM, which always occupies Slot 1 (next to the power supplies).

For Triple Modular Redundant (TMR) applications, the 3500 System requires a TMR version of the TDI. In addition to all the standard TDI functions, the TMR TDI also performs “monitor channel comparison”. The 3500 TMR configuration executes monitor voting using the setup specified in the monitor options. Using this method, the TMR TDI continually compares the outputs from three (3) redundant monitors. If the TDI detects that the information from one of those monitors is no longer equivalent (within a configured percent) to that of the other two monitors, it will flag the monitor as being in error and place an event in the System Event List.
Specifications

Inputs
Power Consumption
10.5 Watts

Data
Front panel:
115.2 kbaud maximum RS232 serial communications

10Base-T / 100Base-TX I/O:
10Base-T or 100Base-TX Ethernet, autosensing

100Base-FX I/O:
100Base-FX Fiber-Optic Ethernet

Outputs
Front Panel LEDs
OK LED:
Indicates when the 3500/22M is operating properly

TX/RX LED:
Indicates when the 3500/22M is communicating with the other modules in the rack.

TM LED:
Indicates when the 3500 rack is in Trip Multiply mode.

CONFIG OK LED:
Indicates that the 3500 rack has a valid configuration.

I/O Module OK Relay:
Relay to indicate when the 3500 rack is operating normally or when a fault has been detected within the rack. User can select either an “OPEN” or “CLOSED” contact to annunciate a NOT OK condition. This relay always operates as “Normally Energized”.

OK Relay:
Rated to 5A @ 24 Vdc/120 Vac, 120 Watts/600 VA Switched Power.

Normally closed contacts:
Arc suppressors are provided.

Controls
Front Panel
Rack reset button:
Clears latched alarms and Timed OK Channel Defeat in the rack.

Performs same function as “Rack Reset” contact on I/O module.

Address switch:
Used to set the rack address: 127 possible addresses.

Configuration Keylock:
Used to place 3500 rack in either “RUN” mode or “PROGRAM” mode.
RUN mode allows for normal operation of the rack and locks out configuration changes.
PROGRAM mode allows for normal operation of the rack and also allows for local or remote rack configuration. The key can be removed from the rack in either position, allowing the switch to remain in either the RUN or PROGRAM position. Locking the switch in the RUN position allows you to restrict unauthorized rack reconfiguration. Locking the switch in PROGRAM position allows remote reconfiguration of a rack at any time.
Maximum Current:
<1 mA, Dry Contact to Common

Alarm Inhibit:

Description:
Used to inhibit all alarms in the 3500 rack.

Maximum Current:
<1 mA, Dry Contact to Common

Rack Reset:

Description:
Used to clear latched alarms and Timed OK Channel Defeat.

Maximum Current:
<1 mA, Dry Contact to Common

Data Collection

Keyphasor

Inputs:

- Supports the four 3500 system Keyphasor signals. The speed range support is based on the number of dynamic channels enabled:

<table>
<thead>
<tr>
<th>Number of Channels</th>
<th>Minimum Speed</th>
<th>Maximum Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 to 16</td>
<td>1 rpm</td>
<td>100,000 rpm</td>
</tr>
<tr>
<td>17 to 24</td>
<td>1 rpm</td>
<td>60,000 rpm</td>
</tr>
<tr>
<td>25 to 48</td>
<td>1 rpm</td>
<td>30,000 rpm</td>
</tr>
</tbody>
</table>

- Supports multiple events per revolution speed inputs up to 20 kHz.

Startup / Coastdown Data

- Data collected from speed and time intervals.
- Increasing and decreasing speed interval independently programmable.

- Initiation of transient data collection based on detecting the machine speed within one of two programmable windows.
- The number of transient events that can be collected is only limited by the available memory in the module.

Alarm Data Collection

- Pre- and post-alarm data.
- 1 second of static values collected for 10 minutes before the event and 1 minute after the event.
- 100 ms static values collected for 20 seconds before the event and 10 seconds after the event.
- 2.5 minutes of waveform data at 10-second intervals before the alarm and 1 minute collected at 10-second intervals after the alarm.

Static Values Data

- TDI will collect the static values including the values measured by the monitors.
- TDI provides four nX static values for each point. Amplitude and phase are returned for each of the values.

Waveform Sampling

- Collection of waveforms for 48 channels.
- DC-coupled waveforms.
- Simultaneous Synchronous and Asynchronous data sampled during all operational modes.
- User-configurable Synchronous waveform sampling rates:
- 1024 samples/rev for 2 revolutions,
- 720 samples/rev for 2 revolutions,
- 512 samples/rev for 4 revolutions,
- 360 samples/rev for 4 revolutions,
- 256 samples/rev for 8 revolutions,
- 128 samples/rev for 16 revolutions,
- 64 samples/rev for 32 revolutions,
- 32 samples/rev for 64 revolutions,
- 16 samples/rev for 128 revolutions.

- Asynchronous data sampled to support an 800-line spectrum at the following frequency spans:
 - 10 Hz,
 - 20 Hz,
 - 50 Hz,
 - 100 Hz,
 - 200 Hz,
 - 500 Hz,
 - 1000 Hz,
 - 2000 Hz,
 - 5000 Hz,
 - 10 kHz,
 - 20 kHz, and
 - 30 kHz.
- Asynchronous data is anti-alias filtered.
- Channel Pairs for providing Orbit or synchronous full spectrum presentations can be split among multiple monitors. For asynchronous full spectrums the channels must be within a monitor channel pair (30 kHz frequency span data will not be phase correlated between channel pairs).

Communications
Protocols
BN Host Protocol:
Communication with 3500 Configuration Software, 3500 Data Acquisition Software, and 3500 Display Software.

BN TDI Protocol:
Communication with GE’s System 1 Asset Management and Data Collection Software.

Front Panel
Communications:
RS232
Protocol Supported:
BN Host Protocol.

Baud Rate:
115.2 kbaud maximum (auto-baud capable)

Cable Length:
USB Cable Length: 5 meters (16.4 ft) maximum. A 3 meter (9.8 ft) cable is included with the 3500 rack.

Connector:
USB-B

10Base-T / 100Base-TX Ethernet I/O
Communications:
Ethernet, 10Base-T and 100Base-TX. Conforms to IEEE802.3.

Protocol Supported:
BN Host Protocol and BN TDI Protocol using Ethernet TCP/IP.

Connection:
RJ-45 (telephone jack style) for 10Base-T/100Base-TX Ethernet cabling.

Cable Length:
100 metres (328 feet) maximum.

100 Base-FX Ethernet I/O

Communications:
Ethernet, 100Base-FX Fiber Optic, full duplex multimode. Conforms to IEEE802.3u.

Protocol Supported:
BN Host Protocol and BN TDI Protocol using Ethernet TCP/IP.

Connection:
MT-RJ Male Fiber Optic connector for 100 Base-FX cabling.

Cable Length:
2000 metres (6560 feet) maximum, multimode fiber optic cable.

Note
The 3500/22M has a MT-RJ Male connector on the unit for Fiber Optic 100 Base-FX cabling therefore you MUST use a MT-RJ Female connector on the fiber optic cable to ensure proper connectivity.

Environmental Limits

TDI Module,
10Base-T / 100Base-TX I/O, and 100Base-FX I/O

Operating Temperature:
-30 °C to +65 °C (-22 °F to +149 °F)

Storage Temperature:
-40 °C to +85 °C (-40 °F to +185 °F)

Humidity:
95%, non-condensing

Battery Life

Powered TDI:
38 years @ 50°C (122 °F)

Un-powered TDI:
12 years @ 50°C (122 °F)

Compliance and Certifications

EMC

Standards:
- EN 61000-6-2 Immunity for Industrial Environments
- EN 55011/CISPR 11 ISM Equipment
- EN 61000-6-4 Emissions for Industrial Environments

European Community Directives:
- EMC Directive 2004/108/EC

Electrical Safety

Standards:
- EN 61010-1

European Community Directives:
- 2006/95/EC Low Voltage

Hazardous Area Approvals

North American

Approval Option (01)

Class 1, Div 2

Groups A, B, C, D

T4 @ Ta = -20 °C to +65 °C
North American Approval Option (02)

Ex nC(L) IIC
Class 1, Zone 2
Class 1, Div 2, Groups A, B, C, D
T4 @ Ta -20 °C to +65 °C
(-4 °F to +150 °F)

ATEX:

Approval Option (02)

For Selected Ordering Options with ATEX/North American agency approvals:

II 3/(3) G
Ex nC(L) IIC
T4 @ Ta = -20 °C to +65 °C
(-4 °F to +150 °F)

Brazil Approval Option (02)

For Selected Ordering Options with ATEX/North American agency approvals:

BR-Ex nC [nL] IIC T4
T4 @ Ta = -20 °C to +65 °C
(-4 °F to +150 °F)

South Africa Approval Option (02)

For Selected Ordering Options with ATEX/North American agency approvals:

Ex nCAL [ia] IIC T4
Ex nCAL [L] IIC T4
T4 @ Ta = -20 °C to +65 °C

Physical

TDI Module

Dimensions (Height x Width x Depth)

241.3 mm x 24.4 mm x 241.8 mm
(9.50 in x 0.96 in x 9.52 in).

Weight

0.91 kg (2.0 lbs).

I/O Modules

Dimensions (Height x Width x Depth)

241.3 mm x 24.4 mm x 99.1 mm
(9.50 in x 0.96 in x 3.90 in).

Weight

0.20 kg (0.44 lbs).

Rack Space Requirements

TDI Module

1 full-height front slot.

I/O Modules

1 full-height rear slot

Ordering Information

List of Options and Part Numbers

3500/22M TDI Module and I/O

3500/22-AXX-BXX-CXX

A: Transient Data Interface Type

0 1 Standard (Use for standard monitoring applications)
0 2 TMR (Use only for applications that require a Triple Modular Redundant Configuration).

B: I/O Module Type

0 1 10Base-T/100Base-TX Ethernet I/O module
100 Base-FX Fiber Optic Cable with MT-RJ Female connectors
161756-AXXX

A: Length (in ft.) up to 1300 ft (400 m) in length:
 10 ft. – 500 ft. in 10 ft. increments only
 500 ft. – 1300 ft. in 10 ft. increments only

3500/22M Dynamic Data Enabling Disk
This disk enables the number of channels of dynamic data (i.e., the ability to collect waveforms) that the TDI will support. There are two levels of dynamic data. Steady-State points are channels that collect waveform data due either to a software command or to an alarm event, and therefore support current values, scheduled waveform capture, and alarm data capture. Transient points provide all the function of a Steady-State point with the additional capability of waveform collection due to parameter variations such as machine speed.

3500/09-AXXX-BXXX

A: Steady-State Points:
 0 to 672

B: Transient Points:
 0 to 672
 Note: The sum of the two fields must be equal to or less than 672. One disk can support multiple TDIs.

Ethernet Cables:
Standard 10 Base-T/100 Base-TX Shielded Category 5 Cable with RJ-45 connectors (solid conductor)
138131-AXXX

A: Cable Length:
 0 0 6 6 feet (1.8 m)
 0 1 0 10 feet (3.0 m)
 0 2 5 25 feet (7.6 m)
 0 4 0 40 feet (12.2 m)
 0 5 0 50 feet (15.2 m)
 0 7 5 75 feet (22.9 m)
 0 8 5 85 feet (25.9 m)
 1 0 0 100 feet (30.5 m)
 1 2 0 120 feet (36.6 m)
 1 5 0 150 feet (45.7 m)
 2 0 0 200 feet (61.0 m)
 2 5 0 250 feet (76.2 m)
 3 2 0 320 feet (97.5 m)
 Note: Standard lengths for 10Base-T/100 Base-TX cabling are shown above.

Spares
288055-01
Standard Transient Data Interface Module with USB cable

288055-02
TMR Transient Data Interface Module with USB cable

100M2833
10 foot A to B USB cable

146031-01
10Base-T/100Base-TX I/O Module

146031-02
100Base-FX (Fiber Optic) I/O Module

147364-01
3500 Buffered Signal Output Module

161580-01
3500/22M TDI Operation and Maintenance Manual

164466-01
Network Accessories Datasheet

00580441
Connector header, internal termination, 3-position, green

00580436
Connector header, internal termination, 6-position, green

Specifications and Ordering Information
Part Number 161581-01
Rev. K (02/14)
Graphs and Figures

Figure 1: Front and rear view of the Transient Data Interface

1 Main module
2 10 Base-T/100 Base-TX Ethernet I/O module
3 100 Base-FX Ethernet I/O module
4 LEDs: Indicates the operating status of the module
5 Hardware switches
6 Configuration port: Configure or retrieve machinery data using USB
7 OK relay: Indicates the OK status of the rack
8 Fiber optic Ethernet port: For configuration and data collection
9 RJ-45 Ethernet port: For configuration and data collection
10 System contacts
Compatibility

When upgrading your 3500 rack from a 3500/20 RIM to a 3500/22 TDI, there may be 3500 M modules (e.g. 3500/40M) that are not compatible with the 3500/22. Please check with bntechsupport@ge.com for additional details.

* Denotes a trademark of Bently Nevada, Inc., a wholly owned subsidiary of General Electric Company.

© 2002 – 2014 Bently Nevada, Inc. All rights reserved.

Printed in USA. Uncontrolled when transmitted electronically.

1631 Bently Parkway South, Minden, Nevada USA 89423
Phone: 775.782.3611 Fax: 775.215.2873
www.ge-mcs.com/bently